

Battlement Mesa Natural Gas Development Plan Meeting #7

<u>Environmental Program</u> – Air Quality and Water Resource Protection and Noise, Dust, Weed, Light, and Visual Mitigation

October 7, 2009

- July 1st Introductory Meeting (define future mtgs and public involvement process)
- July 29th Pad Locations, Facilities, and Setbacks
- August 5th Surface Use Agreement
- August 19th Drilling Schedule and Pace
- September 2nd Traffic Plan
- September 16th Drilling, Completion, and Water Management Plan
- October 7th Environmental Program
- October 21st Emergency Response Plan and Pad Security Plan
- November 4th Post Drilling and Completion Operations and Interim Reclamation

(All meetings are open to the public and times are posted in *Grand Valley Echo* and on <u>battlementmesacolorado.com</u> website)

Review Major Aspects of Environmental Program

- Air Quality and Odor Mitigation
- Surface Water Resource Protection
 - Spill Prevention
 - Stormwater/Erosion Control
- Mitigation Strategies
 - Noise
 - Dust
 - Light
 - Weeds
 - Visual/Aesthetics
- Question and Answer Session

• What are the major potential emission sources involved in natural gas development?

<u>Temporary</u>

- Truck Traffic and Construction of Pads and Pipelines fugitive dust
 - Controls = reduce traffic (water pipeline), gravelling pads and dust suppression via water/soiltac
- Drilling Rig Generators diesel fumes and exhaust emissions
 - Controls = electric grid power-substitute for diesel generators, low NOX engines where grid unavailable
- Drilling Reserve Pits
 - Controls = pitless drilling
- Fraccing Operations diesel fumes and exhaust emissions, flowback tanks
 - Controls = Green completion skids and covered flowback tanks

Long Term

- Production Tanks VOC emissions from condensate flashing (> 90% of potential)
 - Controls = Combustor flare controls and automatic igniters
- Separators and Wellheads fugitive VOC emissions from valves and flanges
 - Controls = Low bleed valves and routine maintenance of connection integrity
- Water Handling Facility VOC and bacterial odors
 - Controls = Eliminate through use of covered pit design and vapor collection/combustion

• What did Antero model and why?

- The community expressed concerns about air quality
 - Expansion of voluntary Antero programs
- Antero modeled VOC emissions from production tanks because:
 - Continuous source of emissions over the productive life of a natural gas well
 - Uncontrolled emissions can be relatively significant compared to the other emission sources
- Purpose of modeling study
 - To identify and evaluate the potential air quality impacts at nearby residences from production tanks at planned well pads

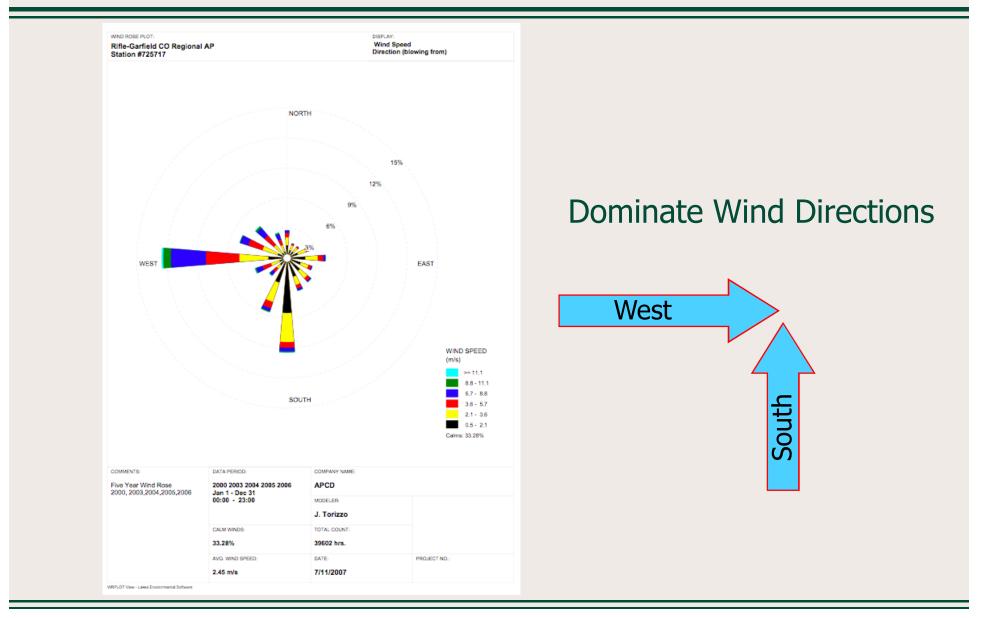
• Potential Air Quality Impacts

- EPA approved air model (AERMOD) used to estimate air quality impacts
- Air Quality Impacts = Predicted benzene concentrations around well pads
- EPA model used Rifle Airport meteorological data and worst case production tank emission rates
- Modeled Benzene Concentrations
 - Compared to EPA Health Based Standards and
 - Colorado Air Monitoring Data
- Conclusion Modeled Worst Case Benzene Concentrations at Nearby Residences <u>Are Significantly Below</u> EPA Health Based Standard

• Assumptions

- No tank emission controls
- Up to 20 wells on a completed pad (2x Antero actual dev. plans)
- 11 proposed pads
- 1.78 bbls condensate per MMscf (Grand Valley and Parachute Field)
- Each well makes 2 MMscf/day
- Each pad was modeled assuming 75 bbls/day condensate
- Antero Tank Emission Factor
 - EPA Approved Model (E&P Tanks 2.0) Used to determine condensate tank VOC/benzene emission rates
 - Uncontrolled Benzene emissions \sim 0.36 tpy from each well pad
 - Uncontrolled Emission Factor = 0.026 lbs benzene/bbl condensate

- Why Model Worst Case Uncontrolled Emission Scenario?
 - Actual production tank well pad emissions controlled by flare with potential to be fitted with auto igniter
 - Actual modeled emissions (controlled) will be significantly less than worst case modeled emissions (uncontrolled)
 - If worst case modeled benzene concentrations are below EPA health based standards then actual benzene impacts will be significantly less


- Used a Rifle Airport 5-yr meteorological dataset
- Rifle Airport dataset provided by Colorado Department of Public Health & Environment (CDPHE)
- Rifle Airport Wind direction/speed data
 - Most representative of Battlement Mesa meteorological conditions
 - Prevailing wind direction are from west and south (see Rifle Airport Wind Rose Slide)
- Rifle Airport Terrain influences
 - Similar to Battlement Mesa
 - Both locations immediately south of river and I-70
 - Rifle Airport at 5,500 ft, Battlement Mesa at 5,100 to 5,500 ft

- Located in Grand Valley oriented NW to SE
- PCGP Wind Rose shows prevailing winds parallel to Grand Valley
- Dataset limited to 1-yr

[•] Closet meteorological dataset is Williams' Parachute Creek Gas Plant (PCGP), however it was not used because:

Modeling Inputs – Rifle Airport Wind Rose

- Modeled potential offsite impacts at "Receptors" out to 1,500 feet in all directions from each well pad location
- Receptor = residence, golf course clubhouse, schools, etc.
- Impacts = Modeled 24-hr Benzene Concentrations
- Identified location of Potential Maximum 24-hr impacts relative to each pad location
- Modeled Results See Area Specific Well Pad Impact Maps
 - Area specific maps include setback distances
 - 350 ft COGCC Setback in high density areas
 - 500ft Antero Internal Setback
 - 1,000 ft

- Compared modeled worst case uncontrolled 24-hr benzene concentrations to monitoring data in Denver, Grand Junction and Piceance Basin.
- Average monitored 24-hr benzene concentrations
 - Denver = 2.5 to 3.2 μ g/m³ (data collection follows EPA monitoring protocols)
 - Grand Junction = $1.6 \mu g/m^3$ (data collection follows EPA monitoring protocols)
 - Parachute = 3 µg/m³ (likely less than 3 µg/m³ because benzene "non-detects" not counted Garfield County monitoring data)
- Benzene monitoring data for Colorado are presented in following table

Benzene Monitoring Results in Colorado

- 24-hr Measured Concentrations

	24-hr Conc. (ug/m ³)		
Location	Average	Maximum	
¹ Denver - Urban Site 1	3.2	7.4	
¹ Denver - Urban Site 2	2.5	7.2	
¹ Denver - Urban Site 3	2.8	7.0	
² Grand Junction (Powell)	1.6	4.2	
Glenwood - Courthouse	1.2	3.5	
New Castle - Library	2.0	15.0	
Rifle - Henry Bldg	2.9	6.9	
Parachute	3.0	5.1	
Silt - Cox	1.0	1.9	
Silt - Bell	2.0	7.4	
Butterfly	2.0	7.7	
Isley	1.2	3.0	
West Landfill	4.4	7.5	
Sebold	1.1	2.7	
Haire	1.0	2.3	

¹ Denver data from 2003 monitoring project

² Grand Junction 2006-2007 data (Powell site)

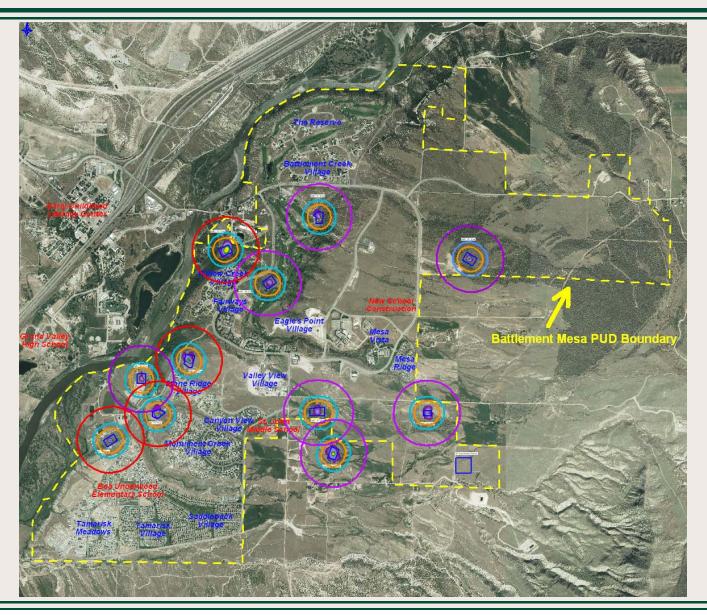
* Garfield County date from 2005-2007 study

Benzene Air Quality Data - Modeled

- Worst case modeled benzene concentrations were compared to:
 - EPA acceptable 24-hr exposure of 30 µg/m³ = benzene health based standard (U.S. EPA. Integrated Risk Information System (IRIS) on Benzene. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. 2002)
- Residential (receptor) locations are all below the EPA standard of 30 µg/m³
- 9.2 μ g/m³ was the highest modeled 24-hr concentration (house north of N Pad). (maximum out of 365 X 5 yrs = 1825 days)
- Background benzene 24-hr concentration of 3 µg/m³ in Parachute was added to modeled results for comparison to the health based 24-hr standard.
- Maximum Modeled benzene 24-hr concentrations for each well pad are presented in the next slide.

Benzene AERMOD Results – All Pads

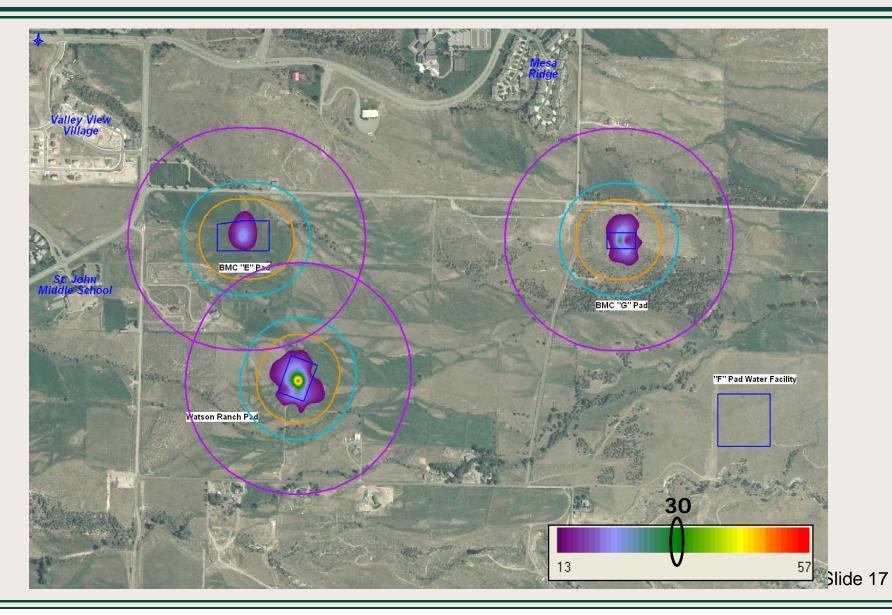
Antero Resources - All Proposed Production Pads


 Table 1: AERMOD Modeled Benzene Impacts from Uncontrolled Tank Emissions

 - Rifle Garfied County Airport Meteorological Data

	Maximum Modeled Benzene Concentrations (µg/m3)				-	
	Distance to Sensitive Receptor	Closest Sensitive Receptor ²	Average of Monitored Benzene Samples collected in Parachute		Comparison To Acceptable Health-Based Threshold Concentrations (µg/m3)	
Pad Location	(feet)	24-hr (acute)	24-hr Background	Total	Acute (24-hr) - EPA ¹	Acute (24-hr) - Utah TLV ²
Pad N	~615'	6.17	3.0	9.2	30 (µg/m ³)	53 (μg/m3)
	~515'	0.67	3.0	3.7		
Watson Pad	~680'	0.90	3.0	3.9		
Pad A	~529'	0.55	3.0	3.6		
Pad B	~585'	0.80	3.0	3.8		
Pad C	~535'	3.79	3.0	6.8		
Pad D	~540'	3.10	3.0	6.1		
Pad E	~730'	1.56	3.0	4.6		
Pad G	~1030'	1.65	3.0	4.7		
Pad K	~2600'	0.24	3.0	3.2		
Pad L	~1056'	4.52	3.0	7.5		
Pad M	~745'	1.20	3.0	4.2		
** Acute exposures	are considered s	short-term 24-hr exposures				
		rm exposures below which no inl	nalation health impacts are	anticipated		

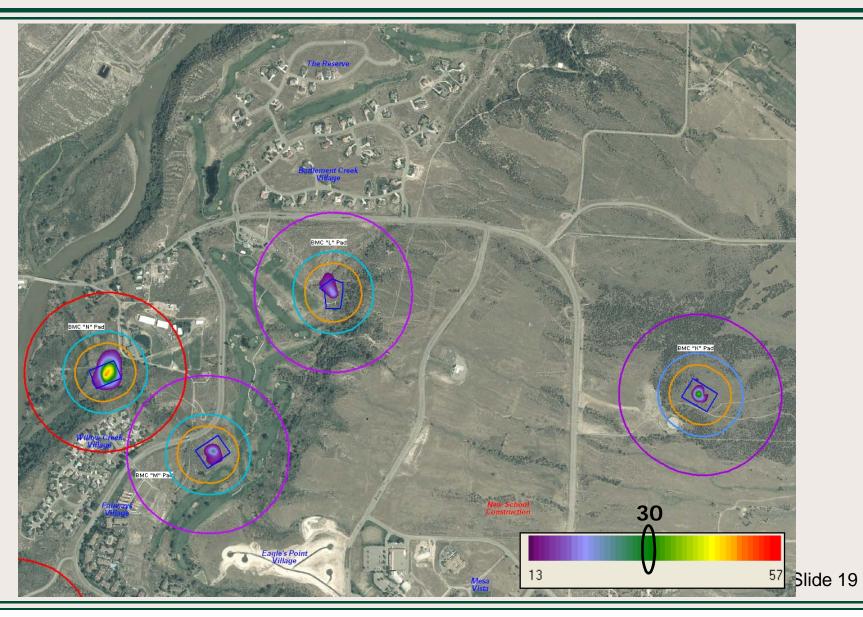
Air Quality – Base Map



Slide 16

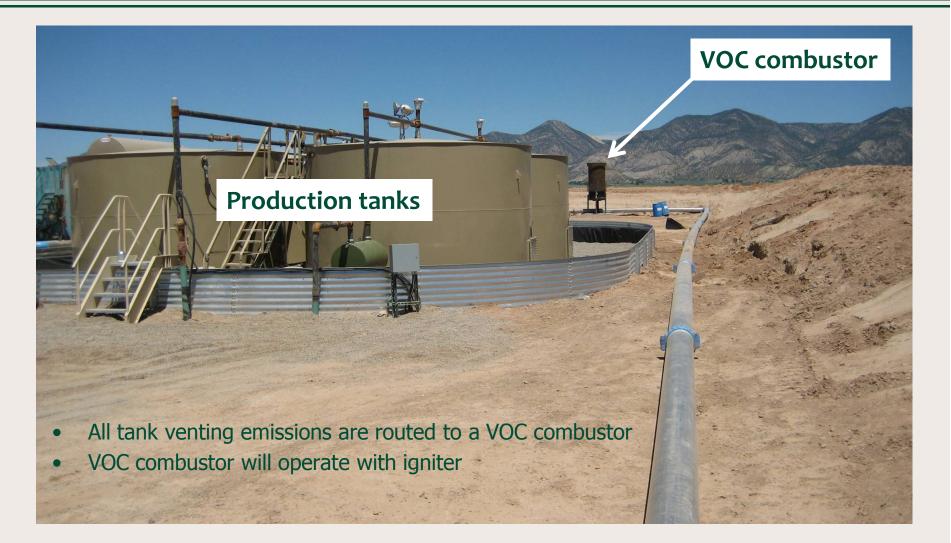
Air Quality – Southeastern Pads

Air Quality - Southwestern Pads



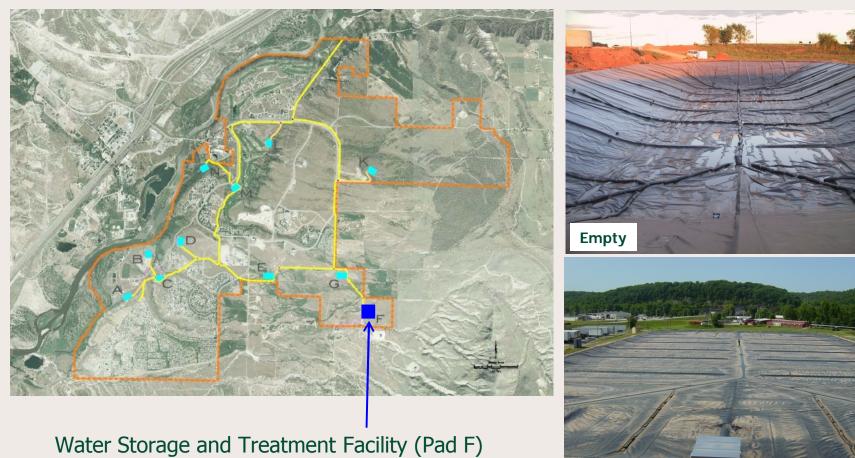
Slide 18

Air Quality – Northern Pads



Air Modeling Study - Conclusions

- The modeled benzene concentrations at or above the EPA health based standard of 30 μ g/m³ do not extend beyond pad boundaries
- The modeled benzene concentrations at ALL residential receptors are between 3.2 and 9.2 ug/m³ - well below the 24-hr EPA acceptable exposure threshold of 30 ug/m³ (includes background)
- Antero installed control measures will reduce incremental benzene emissions by approximately 95%
- The <u>highest</u> modeled benzene concentration (worst case scenario) at nearest residence is about 30% of the acceptable EPA health based standard, <u>average</u> is about 19% of the acceptable EPA health based standard


Slide 22

Storage tanks enclosed for odor control

Full

Example of Cover Technology for Water Handling Facilities

Slide 24

• Well Pads – potential air emissions reduced and/or eliminated with controls or design (e.g. electric power from grid)

• Production Tank Air Quality Modeling Study

- Dr. Walker of Mesa State said during his August 2, 2009 GVCA annual meeting that "air quality modeling is a useful predictive tool for estimating exposures to VOC emissions from oil and gas."
- The modeled benzene concentrations at ALL residential receptors are well below the 24-hr EPA acceptable exposure threshold of 30 ug/m³