Air Quality Basics

Rick Matar – WILLIAMS PRODUCTION February 2010

Comparison of Air Pollution Emissions of Standard Fuels

			Contraction of the second s
A AN A A A A A A A A A A A A A A A A A	Contraction of the second	d JERON	W. AND AND AND AND
A HEAVER AL	1º los	Dura IV	AD SULLA
	-		1 A A A
		1 1 they	
The second	Natural	Gas Coal	Fuel Oil
Carbon Monoxide (CO)	20	30	30
Hydrocarbons (HC)	3	5	10
Nitrogen Oxides (NOx)	100	834	330
Sulfur Dioxide (SOx)		1,700	1,000
Particulate Matter	5	3,100	83
Carbon Dioxide (CO2)	115	210	165

Source: U.S. Environmental Protection Agency and the American Gas Association

Comparison of a Natural Gas Well To Other Energy Sources

Natural Gas Well:

One average natural gas well (1 BCF over 20 yrs, 73 MMCF/yr) creates an initial surface disturbance of approximately <u>2</u> acres (even less per well when using directional technology). Once drilled, the majority of land is reclaimed leaving approximately a 40' x 40' square for operations (<u>0.2</u> acre).

One Natural gas well can heat over 850 homes for 20 years

Comparison of a Natural Gas Well To Other Energy Sources

Wind:

Nearly 20 one MW wind turbines are needed which occupy over <u>200</u> acres. Almost **15,000** wind turbines encompassing > 150,000 acres would be required to produce the same amount of energy as a 750-well production area.

<u>Solar</u>:

<u>46</u> acres of the most efficient commercially available array of solar panels operating for 20 years. Over **34,000** acres of solar panels would be required to produce the same amount of energy as a 750-well production area.

Comparison of a Natural Gas Well To Other Energy Sources

Wood:

Approximately 44,232 pine trees; that's <u>402</u> acres of 1-foot diameter, 100-foot tall pine trees on 20foot centers. Nearly 300,000 acres of trees would be required to produce the same amount of energy as a 750-well production area.

Water/Hydro:

 Lake Powell (Glen Canyon Dam) produces electricity equivalent to one of our three Piceance Basin gas fields (267 one-BCF wells).

Comparison of Gas well disturbance to the disturbance of a Wind Farm

One Pad with approximately 8 Gas wells North of I-70 in the Parachute area.

Approximately 160 wind turbines In California outside of Palm Springs

Sources of Air Pollution / Emissions

NATURAL

- 1. Volcanoes
- 2. Forest Fires
- **3. Decaying Plants**
- 4. Pine Forests
- 5. Naturally Occurring Substances Like Radon

Sources of Air Pollution / Emissions

8

MAN MADE

- 1. Routine Emissions From Industrial Sources (Power Plants, Refineries, Chemical Plants, Gas Plants, etc.)
- 2. Mobile Sources Such as cars, trucks, planes, trains, and construction equipment (contributes about 50% of all pollution)
- **3.** Accidental Releases (Spills)
- 4. Tobacco Smoke
- 5. Manufacturing, Consumer Products, Diesel Exhaust
- 6. Man Made Chemicals: Pesticides, Herbicides, Household cleaners

Sources of Air Pollution / Emissions

Study Links Asia to Smog in North America

Ozone from South East Asia contributes to American Western States background levels by as much as 30%.

http://trib.com/news/state-and-regional/article 1e6b862f-e2df-5d51-bdde-718ed8edebbf.html

Air Emissions From Oil & Gas Industry

10

Categories and Pollutants

- Combustion NOx, CO, VOC, SO₂, Formaldehyde
- Tank Emissions/Flashing VOC, Benzene

Fugitive – PM₁₀, VOC

Oil & Gas and Drilling Air Pollution Reduction Strategies

- 1. Using High Efficiency Drill Rigs Reducing Overall Drilling Foot Print and Impact on Environment
- 2. Employing Green Completion Where Feasible
- 3. Building Centralized Production Facilities Achieving Higher Efficiency for Controls and Reducing Truck Traffic thus Reducing Diesel Exhaust and Fine Particulate Emissions
- 4. Reclaiming and Recycling Produced Water Through the use of High Efficiency Oil Separation, Polishing and Aerobic Bio-Treatments in Addition to Conventional Controls.

Oil & Gas Air Pollution Control Techniques

- Catalytic Converters
- Condensers
- Flares
- Thermal Oxidizers
- Vapor Recovery
- Water
- Flow back Skids Green Completions

Legislation Protection Air Quality

Clean Air Act -Environmental Protection Agency Regulations & Rules

Colorado Department of Public Health and Environment – Air Pollution Control Division Regulations

Colorado Oil & Gas Conservation Commission - COGCC

Condensate, Crude Oil, Produced Water Tanks

- 5 TPY threshold
- □ ¹⁄₂ mile from residence etc.
- 95% VOC control

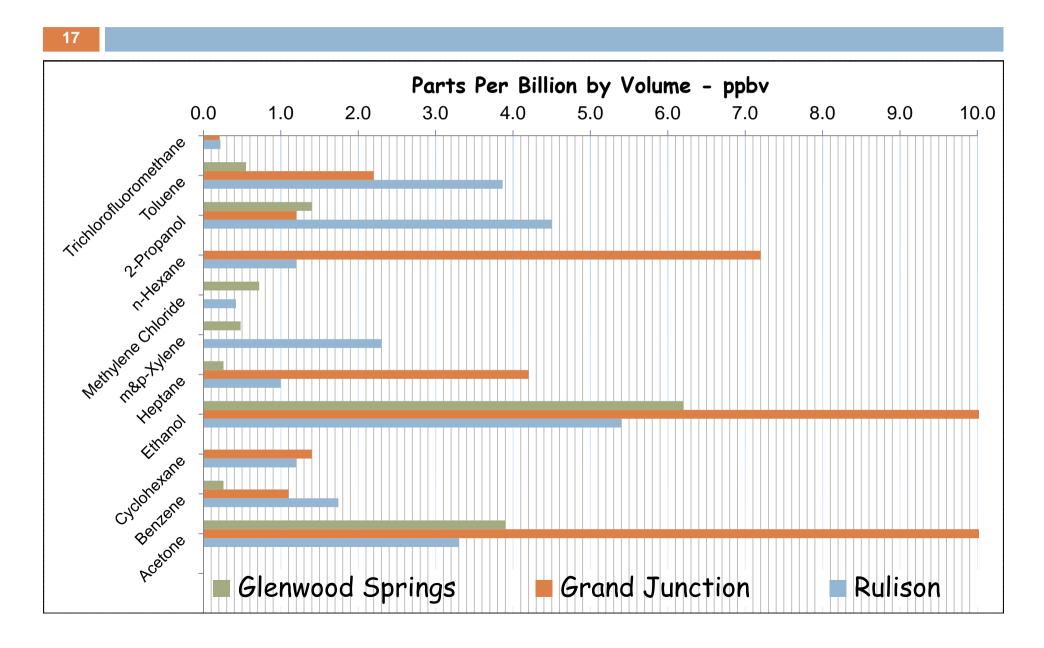
Glycol Dehydrators

- 5 TPY threshold
- □ ¹⁄₂ from residence, etc
- 90% VOC control for glycol dehydrators

Pits

- 2 TPY threshold
- May not be located within ½ mile of residence, etc.

Permitting & Compliance with the Regulations


- Obtaining permits where required prior to construction/installation
- Periodic Stack Testing, Sampling and Monitoring
- Routine Compliance Certifications and Reports to the Overseeing Agencies
- Routine Agency Audits & Inspections
- Ongoing Internal Compliance Review and Corrective Action Programs
- Being an Environmentally Responsible Corporate Citizen

Local Air Quality Data – 2009 Snap Shot

16

Parts Per Billion by Volume - ppbv							
Detected Organics	Rulison	Grand Junction	Glenwood Springs	OSHA PEL TWA			
Acetone	3.3	23	3.9	1,000,000			
Benzene	1.7	1.1	0.26	1,000			
Cyclohexane	1.2	1.4	ND	300,000			
Ethanol	5.4	18	6.2	1,000,000			
Heptane	1.0	4.2	0.26	500,000			
m&p-Xylene	2.3	ND	0.48	100,000			
Methylene Chloride	0.4	ND	0.72	25,000			
n-Hexane	1.2	7.2	ND	500,000			
2-Propanol	4.5	1.2	1.4	400,000			
Toluene	3.9	2.2	0.55	200,000			
Trichlorofluoromethane	0.2	0.21	0.21	1,000,000			

Local Air Quality Data – 2009 Snap Shot

18

At home or work:

- Conserve electricity to help reduce air pollution caused by power plants.
- Participate in your local utility's energy conservation programs.
- Look for the Energy Star label when buying home and office equipment.

19

At home or work - Continued:

- Avoid smoking indoors.
- Use gas logs instead of wood. If you use a wood-burning stove or fireplace insert, make sure it meets EPA design specifications. Burn only dry, seasoned wood.
- Have your home tested for radon and fixed, if high levels are indicated.
- Avoid excess use of pesticides and follow the manufacturer's directions for application and disposal.
- Minimize use of household cleaning products and follow use and disposal directions.

At home or work - Continued:

- Keep containers of home, workshop and garden chemicals tightly sealed; dispose of empty or outdated products properly.
- Use paints with lower volatile organic compounds (VOC) content.
- Use products that emit fewer toxic chemicals, such as wood products with less formaldehyde.
- If your home was built before 1979, have the paint tested for lead.
- If your home is over 20 years old, have it checked for asbestos and have any asbestos removed by certified technicians.

20

21

In your car:

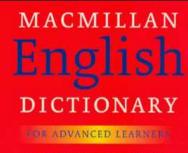
- Avoid smoking in your car
- Buy a fuel-efficient car.
- Combine errands to drive as few miles as possible; car pool, use public transportation, bike, or walk.
- Accelerate gradually and avoid sharp braking.
- Keep your vehicle properly tuned.

22

Learn about the products you use in and around your home. Reduce the use of those with toxic substances or better yet, replace them with nontoxic substitutes.

- Using baking soda and vinegar in place of more hazardous household cleaners.
- Replace a traditional solvent degreaser with a waterbased degreaser.
- Use a semi-permanent hair color rather than permanent.
- Use low or no formaldehyde pressed-wood products.
- Remove items that attract pests around your home to reduce the use of pesticides.

Pull those weeds! Reduce the amount of herbicides you use.


23

- Choose pump spray containers instead of aerosols. Pressurized aerosol products often produce a finer mist that is more easily inhaled. Aerosols also put unnecessary volatile organic chemicals into your indoor air when you use them.
- Ask for unbleached paper products or products bleached with hydrogen peroxide or oxygen, which produce less pollution during papermaking.
- Purchase a mercury-free fever thermometer (but don't just throw away your old one that contains mercury).

Questions - Consultations

INTERNATIONAL STUDENT EDITION

